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Why I am talking about discretely-parameterized blocks?

I believe this should be fun and may potentially benefit some lab members in designing 
and optimizing novel deep learning blocks rather than conventional blocks like fully-
connected layers. 
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The essence of today’s talk is about giving technical solutions on how to learn/optimize 
the parameters. As you might know, optimizing continuous parameters is usually trivial by 
SGD or its variants, but not for discrete ones.

All the methods discussed today might not have a strong theoretical understanding yet, 
like convergence/guarantees/bounds, but they should useful. This is how I would like 
to do.



Outline of This talk
PART 1: Introducing interesting blocks with discrete parameters 
 I will start with conventional ones and then give two examplar discrete blocks. 
PART 2: Learning in the general case 
 Not fun. Not efficient.  
PART 3: Learning in the differentiable case. 
 The essential part of this talk.  
PART 4: The sea of other possibilities 
 Introduce many other possibilities with discrete parameters. 
      Conclusion
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What is  
a more interesting block
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with discrete parameters

PART 1



But before that, why needs interesting block 
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It will be fun.



Deep learning is about freely assembling blocks.
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1. We can come up with customized blocks

2. We have efficient ways for optimization by gradient.



Conventional to interesting ones
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Conventional block, fully connected 
layers, convolutional, recurrent etc. 

All based on the Pitts model (1943) the 
first model of the biological neuron

More modern, interesting ones.  

We do not care whether these blocks are 
a good model for the biological neuron. 
We only need to do computation of our 
interest.



Two example
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Neural Architecture Search Neural Disjunctive Normal Form

Learning the routing pattern of 
some given blocks

Learning discrete IF-THEN rules.



Learning in the general case
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PART 2



Learning discrete blocks in the general case
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We do not assume the block to be differentiable, so the discrete and continuous 
parameters need to be optimized separately. Better think in the problem of 
neural architecture search. 



Learning discrete blocks in the general case
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We do not assume the block to be differentiable, so the discrete and continuous 
parameters need to be optimized separately. Better think in the problem of 
neural architecture search. 

Good solutions include:

• Exhaustive search

• Graduate student local search

• Automatic solutions like some combinatorial algorithms, 
evolution, reinforment learning.

All the methods need to set a configuration of the discrete parameters, then 
learn continuous ones and then look at better configurations.
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PART 3

Learning in differentiable case
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Learning in the general case is time-
consuming, not efficient. 

And in deep learning, non-efficiency often 
means inferior model performance

Why general case is bad

But if we can come up with a differentiable 
version of a block, we can optimize the 
discrete and continuous parameters at the 
same time.



If not originally differentiable, figure out one!
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Differentiable version of our two previous example
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Neural Architecture Search Neural Disjunctive Normal Form

Now the computation becomes differentiable.  The blocks now is well defined on 
continuous values, it is just discrete parameters can only take discrete values.

can be parameterized by binary matrix W and SThe DNF logical operation
As a directed acyclic 
computation graph.

Finding a differentiable version will certainly take some effort, but not always impossible 



Techniques for optimizing discrete parameters by gradient
• Continuous Surrogate 
• Gumbel-softmax 
• Straight-through estimator (STE) 
• Binary Optimizer (Bop) 
• A slightly improved version: STE/Bop + adaptive noise
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From now on, we assume the discrete parameters we want to learn is binary {0,1}

By optimizing discrete parameters by gradient. 

we can do joint optimization of discrete and continuous ones.



Continuous Surrogate
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Pros: optimization is easy like any other continuous valued blocks 

Cons: You do not always get discrete value or near-discrete value in the end. You need 
thresholding after training.

Use a continuous parameter, and apply a 
transformation function like sigmoid/
softsign/tanh. 

Standard optimizer like SGD/Adam can 
be used. 



Continuous Surrogate, temperature-augmented
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Good: might possibly obtain near-discrete value in 
the end. 

Cons: You introduce a new hyper parameter. How 
to gradually increase the temperature need tedious 
tuning. This job might be quite difficult.

Use an extra hyper parameter, a temperature to 
control the closeness to discrete values. 

We gradually increase it per epoch.



Gumbel-softmax trick
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Use a continuous parameter, to serve as a parameter of a distribution from which we can draw 
relaxed categorical variables. Gumbel-softmax works more general to categorical values, more then 
just binary values. 

Use a temperature to control the closeness to discrete values 

Standard optimizer like SGD/Adam can be used. 

g is a noise drawn from a Gumbel distribution.



Gumbel-softmax trick
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Pros:  
A popular technique, widely used.  

Cons:  
1. Not so easy to work with as the temperature needs to be gradually decreased by some 
schedule.  
2. What is more, only when the temperature is small, the value will be close to discrete 
value. But a small temperature also causes numerical instability (division by near-zero).



Straight-through estimator (STE)
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Pros: works quite well for binary neural network,  scalable, efficient. 
Cons: Might get stuck in local minima and learning will fail for discrete blocks like 
Neural Disjunctive Normal Form. (reasons will be explained later)

First proposed in Hinton’s lecture, and then analyzed by Bengio (2014). 
The dominating technique used in binary neural network (weight {-1,1}) 

Conceptually very simple. In the forward pass, a real-valued parameter is 
thresholded by into discrete values and this discrete value is used for 
computation of the objective function. 

In the backwards, the gradient is updated to the real-valued parameter. 

Optimized by standard optimizers like SGD/Adam.



Binary Optimizer (Bop)
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Pros: Same as STE, works quite well for binary neural network,  scalable, efficient. But 
the accepting threshold avoids rapid noisy flips and is intuitive to understand and tune. 
Cons: Same as STE, might get stuck in local minima and learning will fail for discrete 
blocks like Neural Disjunctive Normal Form. (reasons will be explained later)

First proposed by Helwegen et al (NeurIPS 2019). It argues that STE’s real-valued latent 
parameter is not really necessary. We can consider a new optimizer that directly optimize 
discrete values using gradient, instead of SGD/Adam.

m is the gradient learning signal, computed as the exponential average of gradient (momentum)



But all the mentioned methods is not so great
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Continuous Surrogate
Optimization is okay like any continuous valued blocks, but no guarantees on 
binary values. 

Tuning temperature is so difficult. The convergence is more or less determined 
by how we do the temperature schedule, which is hard 

Temperature-augmented surrogate/Gumbel-softmax  

Learning can stuck in local minima. Unlike binary fully-connected layer, for 
Neural DNF it simply does not work. Because when stuck in a local minima, all 
gradient w.r.t to the parameter be zero, thus learning fails. This is because for 
the discrete block computation, despite differentiable, the loss function is 
highly non-smooth.

STE/Bop



A slight improvement: STE/Bop with adaptive noise
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This improved is developed in our work for Neural DNF which can be applied to both STE/Bop. 

We simply add noise to perturb the discrete value during forward computation of the objective 
function.

The new introduced parameter, the noise temperature, can also be optimized by standard 
continuous optimizer like SGD/Adam. So we do not need to do the tuning of temperature 
schedule.



A slight improvement: STE/Bop with adaptive noise
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Pros: STE/Bop with adaptive noise requires minimal modification and give good results. The 
noise temperature is optimized as well so needs no tuning 
Cons: We lack of theoretical understanding. We might be able to find a probabilistic  
interpretation, linking this adaptive noise to approximate variational inference. 

We apply Neural DNF on a synthetic dataset. 

Both STE and Bop with adaptive noise give 
decent convergence speed. We did not show it, 
but STE or Bop alone do not converge. (learning 
always fails) 

We do not show temeperatured surrogate and 
gumbel-softmax because for these two, 
convergence is determined by the temperature 
schedule. With tuning, we can fake any curve.



Simple solution, solve all the 
drawbacks of these alternative 
methods.

26

So consider using it! 



The sea of other possibilities
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PART 4



Discrete not just in computation, but regularization

28

Sometimes, it is not the forward computation, but the objective function that has a 
discrete component.

We can use to train sparse neural network with L-0 regularizations.! 

Simply add a “gate” binary parameter to each of the edges in a fully-connected layer or 
any other blocks. And L-0 regularization will minimize  the non-zero edges!

You can find the reference in the reading web version



More other blocks: differentiable programs
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The Disjunctive Normal Form is only the simplest program (a basic version of 
propositional logic) which means it only suits for binary classification.  

But what about other tasks?

Differentiable program induction seems to be a promising direction!  

(Program induction is to learn a program given input and output pairs.) 

You write down a program template, leaving some learnable 
component, make a differentiable version of it. And then simply apply 
gradient-based learning!



An example, learn to measure the maze length from raw input
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Using a hybrid model consists of a neural network and a program



The merits of differentiable programs
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You get some sense of control by incorporating task specification and human knowledge 
into the form of program

The resulted program is certainly transparent and interpretable.

The program can be trained jointly with any other neural networks. You can let the neural 
network to do perception of patterns from raw data and let the program to do some high-
level computations. 



Customize task-specific blocks/programs!
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Conclusion
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Message 1: think in more interesting blocks

Thinking in more interesting blocks, 
instead of conventional blocks such as 
fully-connected, convolutional layers, 
should open some possibilities on building 
advanced deep learning models.
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Message 2: make differentiable!

When you come up with a block with 
discrete parameters, it is better to think of 
a differentiable version. Because this way 
we can get more efficient learning that we 
can jointly learn discrete and continuous 
parameters at the same time.
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Message 3: optimize using gradient! 

We introduced several alternative methods 
like continuous surrogate, gumbel-
softmax, straight-through estimator (STE), 
Binary Optimizer (Bop), and a slight 
improvement STE/Bop with adaptive 
noise.
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Summary

• Thinking in more interesting blocks, instead of conventional blocks such as fully-
connected, convolutional layers, should open some possibilities on building 
advanced deep learning models. 

• when you come up with a block with discrete parameters, it is better to think of a 
differentiable version. Because this way we can get more efficient learning that 
we can jointly learn discrete and continuous parameters at the same time. 

• We introduced several alternative methods like continuous surrogate, gumbel-
softmax, straight-through estimator (STE), Binary Optimizer (Bop), and a slight 
improvement STE/Bop with adaptive noise. 
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Thank you.
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