
C U B I C B E Z I E R F I T T I N G W I T H L E A S T S Q U A R E S

Cubic Bezier Fitting with Least Squares
Jialin Lu luxxxlucy@gmail.com 2025-04-30

Note that this is the first blog in the Bezielogue series that I plan to write about curves. More fun to come!

code is available at luxxlucy/bezier-rs

TL;DR We introduce the basic task of fitting a cubic Bezier curve to an
ordered list of points. We explore different approaches as follows:

1. Solving a linear least square as introduced in “Curve Fitting” and “Least
Squares Bezier Fit”.

Curve Fitting, Chapter 35 of The Bezier Primer

Least Squares Bezier Fit, Jim Herold 2012

2. The vanilla method only optimizes the control points while fixing the
parameter values. To improve, we can optimize both by an alternating
two-stage method, iteratively improving control points and parameter
values. This converges to the global minimum, but slowly.

Bezier Curve Fitting, Tim A Pastva 1998

3. We further utilize the relationship between control points and parameter
values by variable projection. This eliminates the alternating steps and
converts the problem into a single optimization over parameter values.

4. Lastly an ad-hoc improvisation is introduced. It is simpler and get faster
convergence.

Introduction
In most software applications, cubic Bezier
segments are the canonical form: other types are
often converted to cubic segments during
preprocessing.

Given a list of points in 2D space, we want to fit a cubic Bezier curve to
them. A cubic Bezier curve is defined by four control points 𝑃 =
{𝑝0, 𝑝1, 𝑝2, 𝑝3}:

𝐵𝑃 (𝑡) = (1 − 𝑡)3𝑝0 + 3(1 − 𝑡)2𝑡𝑝1 + 3(1 − 𝑡)𝑡2𝑝2 + 𝑡3𝑝3 (1)

The coefficients form the Bernstein basis functions,
following Pascal’s triangle:

(1)
(1, 1)

(1, 2, 1)
(1, 3, 3, 1)

(1, 4, 6, 4, 1)
⋯

As shown in the figure below, a cubic Bezier curve consists of four control
points:

Figure 1:
A cubic Bezier curve with its control points and the influence of the parameter t (source: wikipedia)

where 𝑃0 and 𝑃3 are the on-curve endpoints, while 𝑃1 and 𝑃2 are the off-
curve control points that influence the curve’s shape. The parameter 𝑡 ∈
[0, 1] is the domain range that kind of represents flow of time that traces the
curve, with 𝑡 = 0 at the start and 𝑡 = 1 at the end.

The Least Square Method
Given a list of points 𝐷 = {𝑑1, 𝑑2, …, 𝑑𝑛} in a 2-dimensional space, the cubic
bezier curve which fits these points is the one that minimizes the following
least square error:

min
𝑝0,𝑝1,𝑝2,𝑝3

∑
𝑛

𝑖=1
‖𝐵𝑝0,𝑝1,𝑝2,𝑝3

(𝑡𝑖) − 𝑑𝑖‖
2

(2)

where 𝑡𝑖 is the parameter value for the 𝑖-th data point.

Now look at the Equation 2, we found that even though p_0, p_1, p_2, p_3 are
the control points we are interested in, 𝑡0, 𝑡1, 𝑡2, 𝑡3 are introduced as auxlilary
variables that we need to estimate as well.

To simplify the formulation we denote 𝑃 = {𝑝0, 𝑝1, 𝑝2, 𝑝3} and 𝑇 =
{𝑡0, 𝑡1, 𝑡2, 𝑡3} and 𝐷 = {𝑑1, 𝑑2, …, 𝑑𝑛} and rewrite the error function as:

min
𝑃,𝑇

∑
𝑛

𝑖=1
‖𝐵𝑃(𝑡𝑖) − 𝑑𝑖‖

2
(3)

Level 1: least square, simply
A simple solution starts by estimating the t-values first, then solving the
least squares problem for P. This works well because Equation 3 is linear
with respect to P.

Least Squares Bezier Fit Jim Herold, 2012

The Bezier Primer Chapter 35 Curve Fitting

The algorithm follows two simple steps:

1. Estimate 𝑇 using a heuristic
2. Solve for 𝑃 given 𝑇

For the first step, we can use several heuristics. Let’s start with the chord
length heuristic, which assigns t-values to points 𝑑0, 𝑑1, …, 𝑑𝑛 based on their
relative positions along the polyline connecting all data points. Specifically,
for each data point, we assign a parameter t proportional to its distance
along this polyline.

Once we have 𝑇 , we can solve for 𝑃 that minimizes Equation 3. Let’s expand
this using the Bezier curve equation from Equation 1:

min
𝑃,𝑇

∑
𝑛

𝑖=1
‖((1 − 𝑡𝑖)

3𝑝0 + 3(1 − 𝑡𝑖)
2𝑡𝑖𝑝1 + 3(1 − 𝑡𝑖)𝑡2𝑖 𝑝2 + 𝑡3𝑖 𝑝3) − 𝑑𝑖‖

2

We can express this more compactly using matrix notation. First, note that:

𝐵𝑃(𝑡) = (1 − 𝑡)3𝑝0 + 3(1 − 𝑡)2𝑡𝑝1 + 3(1 − 𝑡)𝑡2𝑝2 + 𝑡3𝑝3

=

(
((
((
((

1
𝑡
𝑡2
𝑡3)

))
))
))

𝑇

(
((
((
((

1
−3
3

−1

3
6
3

3
−3 1)

))
))
))

(
((
((
((

𝑝0
𝑝1
𝑝2
𝑝3)

))
))
))

We can now rewrite Equation 3 as:

min
𝑃,𝑇

∑
𝑛

𝑖=1
‖𝐵(𝑡𝑖)𝑝 − 𝑑𝑖‖

2 = min
𝑃,𝑇

‖𝒯𝑇 𝐵𝑃 − 𝐷‖𝐹 (4)

where ‖.‖𝐹 is the Frobenius norm, 𝒯𝑇 is the matrix of t-values raised to
powers, 𝐵 is the Bernstein matrix, 𝑃 contains our control points, and 𝐷
contains our data points.

𝒯𝑇 =

(
((
((
((

1
1
…
1

𝑡0
𝑡1
…
𝑡𝑛

𝑡20
𝑡21
…
𝑡2𝑛

𝑡30
𝑡31
…
𝑡3𝑛)

))
))
))

The polynomials 𝒯𝑇 are trivially derived from 𝑇 .

𝐵 =

(
((
((
((

1
−3
3

−1

3
6
3

3
−3 1)

))
))
)) Also known as the Bernstein matrix

𝑃 =

(
((
((
((

𝑝0
𝑝1
𝑝2
𝑝3)

))
))
)) 𝑃 represents the control points of the cubic Bezier

curve, which are our variables of interest.

𝐷 =

(
((
((
((

𝑑1
𝑑2
…
𝑑𝑛)

))
))
)) The sampled data points. Note that each 𝑑𝑖 is

actually a 2D point, but we’ve simplified the
notation here for clarity.

Solving Equation 4 given 𝑇 reduces to a standard linear least squares
problem. Let 𝐿(𝑃 , 𝑇) be the objective in Equation 4:

𝐿(𝑃 , 𝑇) = ‖𝒯𝑇 𝐵𝑃 − 𝐷‖𝐹 = (𝒯𝑇 𝐵𝑃 − 𝐷)𝑇 (𝒯𝑇 𝐵𝑃 − 𝐷)

𝜕(𝐿(𝑃 , 𝑇))
𝜕(𝑃)

= −2𝒯𝑇
𝑇 (𝐷 − 𝒯𝑇 𝐵𝑃)

Since 𝐿(𝑃 , 𝑇) is linear with respect to 𝑃 , we can find the minimum by setting
its derivative to zero. For simplicity, let’s denote 𝐴 = 𝒯𝑇 𝐵. Then we have:

𝑃 ∗ = (𝐴𝑇 𝐴)−1𝐴𝑇 𝐷 where 𝐴 = 𝒯𝑇 𝐵 (5)

where (𝐴𝑇 𝐴)−1𝐴𝑇 is the pseudo-inverse of 𝐴 = 𝒯𝑇 𝐵. Computing Equation 5
is efficient and straightforward.

Now let us test this visually. We first generate a ground truth curve and then
sample points from it, we then apply the least square method to fit the
curve.

Original Curve
Fitted Curve
Sample Points

Figure 2:
Comparison of Original and Fitted Curves

Unfortunately the results seem off, suggesting that curve fitting does not
recover the original curve, not even close.

Notice how the fitted curve passes through all sample points but has a
significantly different shape from the original curve.

In fact, the fitting process does not guarantee that the fitted curve will pass
through all sample points. This is just a coincidentally good case where the
points were sampled at uniform t values.

We further run the algorithm with different heuristics for t-values:

1. Uniform: evenly distribute t values from 0 to 1, without considering the
actual point values

2. Chord length: the default method, which approximates arc length
3. Centripetal: square root of chord length, another good approximation

The results are shown below:

Original cubic Bezier curve Sample points used for fitting

Original Curve
Fitted Curve (Uniform)
Sample Points

Fitted curve using Uniform
parameterization

Original Curve
Fitted Curve (ChordLength)
Sample Points

Fitted curve using ChordLength
parameterization

Original Curve
Fitted Curve (Centripetal)
Sample Points

Fitted curve using Centripetal
parameterization

Original Curve
Fitted Curve (Ground Truth)
Sample Points

Fitted curve using ground truth t-values

Figure 3:
Comparison of Original and Fitted Curves

Original Curve
ChordLength
Uniform
Centripetal
Ground Truth
Sample Points

Figure 4:
Combined visualization of all methods

If we had the ground truth t-values, we for sure could recover the original
curve perfectly. But heuristics would always be non-perfect. This then
becomes too rigid - we need more flexibility. We should be able to adjust
the t-values as well instead of relying on heuristics once and for all.

Level 2: An Alternating Method
Now we want to move a step forward. Let us also optimize 𝑇 as well. We
here introduce an alternating method based on Pastva Tim’s thesis.

Bezier Curve Fitting, Tim A Pastva 1998

The alternating method is an iterative method that alternates between
estimating 𝑇 and 𝑃 :

1. Get initial 𝑇
2. Find 𝑃 given 𝑇
3. Update 𝑇 given 𝑃
4. Repeat steps 2 and 3 until convergence

We will first use the chord length heuristic as default to get the initial 𝑇 and
then use that to fit 𝑃 . Step 2 is essentially Equation 5, so I will not repeat
here.

Step 3 updates 𝑇 based on 𝑃 . Let us start with something simple. Update 𝑇
given 𝑃 can be done simply by updating 𝑇 by the nearest point on the
curve.

For each 𝑑𝑖 ∈ 𝐷, find 𝑡 that minimizes ‖𝐵𝑃(𝑡) − 𝑑𝑖‖2
. Although we can solve

this by solving a (quartic) equation, for simplicity and robustness we can
just opt for a binary search.

Original Curve
Fitted Curve
Sample Points
Nearest Points

Figure 5:
Nearest point

We can see it converges (the result from 0 to 10 iteration steps is plotted
below). But we can also see that the convergence is just too slow.

Original Curve
0 iterations
1 iterations
2 iterations
3 iterations
4 iterations
5 iterations
6 iterations
7 iterations
8 iterations
9 iterations
10 iterations

Sample Points

Figure 6:
Convergence of the alternating method

Pastva considers this nearest point method as the first variant. It also talks
about another variant that uses Gauss-Newton method to update 𝑇 directly.

Notice that Equation 4 is in fact a non-linear optimization problem w.r.t 𝑇 .
Gauss-Newton tries to solve this by approximating a good gradient for 𝑇
and updating it iteratively. Specifically:

We first define the loss function aka residual vector as:

𝑅 =

(
((
((
((
((
((
((
((
((

𝐵𝑥(𝑡1) − 𝑥1
𝐵𝑦(𝑡1) − 𝑦1
𝐵𝑥(𝑡2) − 𝑥2
𝐵𝑦(𝑡2) − 𝑦2

⋮
𝐵𝑥(𝑡𝑛) − 𝑥𝑛
𝐵𝑦(𝑡𝑛) − 𝑦𝑛)

))
))
))
))
))
))
))
))

=

(
((
((
((

𝑟1
𝑟2
…
𝑟𝑛)

))
))
))

∈ ℝ2𝑛

where each 𝑟𝑖 = (
𝐵𝑥(𝑡𝑖)−𝑥𝑖

𝐵𝑦(𝑡𝑖)−𝑦𝑖
).

We then have the Jacobian matrix of partial derivatives:

𝐽 = 𝜕(𝑅)
𝜕(𝑡)

=

(
((
((
((
((
((
((
((
((
((
((
((
((
((𝜕(𝐵𝑥(𝑡1))

𝜕(𝑡1)
𝜕(𝐵𝑦(𝑡1))

𝜕(𝑡1)

0

0
⋮

0

0

0

0
𝜕(𝐵𝑥(𝑡2))

𝜕(𝑡2)
𝜕(𝐵𝑦(𝑡2))

𝜕(𝑡2)
⋮

0

0

…

…

…

…
⋮

…

…

0

0

0

0
⋮

𝜕(𝐵𝑥(𝑡𝑛))
𝜕(𝑡𝑛)

𝜕(𝐵𝑦(𝑡𝑛))
𝜕(𝑡𝑛)

)
))
))
))
))
))
))
))
))
))
))
))
))
))

∈ ℝ2𝑛×𝑛

note that

(
((
((

𝜕(𝐵𝑥(𝑡))
𝜕(𝑡)

𝜕(𝐵𝑦(𝑡))
𝜕(𝑡))

))
)) = 𝜕(𝐵(𝑡))

𝜕(𝑡)
= [0, 1, 2𝑡, 3𝑡2]𝐵𝑃 = [0, 1, 2𝑡, 3𝑡2]𝐵(𝑃𝑥

𝑃𝑦
)

The Jacobian matrix is in fact block diagonal if we consider a
(
(((
(𝜕(𝐵𝑥(𝑡𝑖))

𝜕(𝑡𝑖)

𝜕(𝐵𝑦(𝑡𝑖))

𝜕(𝑡𝑖))
)))
)

 for

each 𝑡𝑖 as a unit.

Given the residual vector and the jacobian, Gauss-Newton method tries to
find the step vector that minimizes the residual by a linear approximation of
𝑅 as 𝑅 + 𝐽Δ𝑡.

Namely, under the first order Taylor expansion,
𝑅(𝑡) ≅ 𝑅 + 𝐽Δ𝑡

min
𝑡

‖𝑅‖𝐹 ≅ min
Δ𝑡

‖𝑅 + 𝐽Δ𝑡‖𝐹

Finding the best step vector corresponds to solving the derivative to 0,

𝜕(‖𝑅 + 𝐽Δ𝑡‖𝐹)
𝜕(Δ𝑡)

= 𝐽𝑇 𝑅 + 𝐽𝑇 𝐽Δ𝑡 = 0

and thus

Δ𝑡 = −(𝐽𝑇 𝐽)−1𝐽𝑇 𝑅

After we get the step vector Δ𝑡, we update each 𝑡𝑖:

𝑡𝑘+1
𝑖 = 𝑡𝑘𝑖 + Δ𝑡𝑖 = 𝑡𝑘𝑖 − [(𝐽𝑇 𝐽)−1𝐽𝑇 𝑅]

𝑖

Needless to say that we need to ensure it stays in
[0, 1]: 𝑡𝑖 ← clamp(𝑡𝑖, 0, 1)

While this approach appears promising, my experimental results show that
Gauss-Newton’s performance is comparable to the nearest point method.
Across different ground truth curves and sampling patterns, the
convergence rate improvement is negligible. Given its simplicity and
stability, I think the nearest point method is preferred.

Figure 7:
Convergence of the Gauss-Newton method compared to nearest point. (x-axis: iteration steps, y-axis: error)
It seems the improvement is slightly small even negligible. We denote the nearest point as Pastva variant 1

and Gauss-Newton as Pastva variant 2.

Level 3: Variable Projection
The alternating method converges quite slowly. One hypothesis is that this
is because each step is really small and thus the improvement of each
iteration becomes negligible, more so if it reaches vicinity of the solution.

Maybe a non-alternating method should be better? Now I consider a further
advanced method called variable projection.

Variable Projection for Nonlinear Least Squares Problems, Dianne O’Leary and Bert Rust 2007

Total least squares fitting of Bézier and B-spline curves to ordered data, Borges and Pastva 2002

The Variable Projection Method - Nonlinear Least Squares Fitting, 2020 Geo-Ant

The idea of variable projection is that if we look closely enough, we will find
that even though we have 𝑃 and 𝑇 in the objective function, 𝑃 is actually
determined by 𝑇 .

Observe that the objective function in Equation 3 is linear to 𝑃 , so we can
just solve for 𝑃 given 𝑇 and then plug it into Equation 3. Given:

𝑃 ∗
𝑇 = (𝐴𝑇 𝐴)−1𝐴𝑇 𝐷 = ((𝒯𝑇 𝐵)𝑇 (𝒯𝑇 𝐵))

−1
(𝒯𝑇 𝐵)𝑇 𝐷

We insert 𝑃 ∗ back into the objective function of Equation 4 and denote 𝐴𝑇 =
𝒯𝑇 𝐵. The objective is:

min
𝑃,𝑇

∑
𝑛

𝑖=1
‖𝐵(𝑡𝑖)𝑝 − 𝑑𝑖‖

2

= min
𝑃,𝑇

‖𝒯𝑇 𝐵𝑃 − 𝐷‖𝐹

= min
𝑃,𝑇

‖𝐴𝑇 𝑃 − 𝐷‖𝐹

= min
𝑇

‖𝐴𝑇 𝑃 ∗
𝑇 − 𝐷‖𝐹

(6)

𝑇 becomes the only variable that we will optimize over. Similarly, let us
optimize this non-linear problem over 𝑇 with Gauss-Newton.

expand 𝐴𝑇 = 𝒯𝑇 𝐵 would lead to

min
𝑇

‖𝒯𝑇 𝐵(((𝒯𝑇 𝐵)𝑇 (𝒯𝑇 𝐵))
−1

(𝒯𝑇 𝐵)𝑇 𝐷) − 𝐷‖
𝐹

but I think this is just too verbose and not easy to
understand. I will keep using the compact notation
𝐴𝑇 = 𝒯𝑇 𝐵.

The residual 𝑅 is defined as 𝑅 = 𝐴𝑇 𝑃 ∗
𝑇 − 𝐷 and the Jacobian matrix of

partial derivatives is:

𝐽 = 𝜕(𝑅)
𝜕(𝑡)

=

(
((
((
((
((
((
((
((
((
((
((
((

𝜕(𝐴𝑇 𝑃 ∗
𝑇)

𝜕(𝑡1)
𝜕(𝐴𝑇 𝑃 ∗

𝑇)
𝜕(𝑡1)

0

0
⋮
0

0

0

0
𝜕(𝐴𝑇 𝑃 ∗

𝑇)
𝜕(𝑡2)

𝜕(𝐴𝑇 𝑃 ∗
𝑇)

𝜕(𝑡2)
⋮
0

0

…

…

…

…
⋮
…

…

0

0

0

0
⋮

𝜕(𝐴𝑇 𝑃 ∗
𝑇)

𝜕(𝑡𝑛)
𝜕(𝐴𝑇 𝑃 ∗

𝑇)
𝜕(𝑡𝑛)

)
))
))
))
))
))
))
))
))
))
))
))

∈ ℝ2𝑛×𝑛

For each entry in 𝐽 , we have

𝜕(𝐴𝑇 𝑃 ∗
𝑇)

𝜕(𝑡)

= 𝜕(𝐴𝑇 𝑃 ∗
𝑇)

𝜕(𝑡)

=
𝜕(𝐴𝑇 (𝐴𝑇

𝑇 𝐴𝑇)−1𝐴𝑇
𝑇)

𝜕(𝑡)

= 𝜕(𝐴𝑇)
𝜕(𝑡)

(𝐴𝑇
𝑇 𝐴𝑇)−1𝐴𝑇

𝑇 𝐷 + 𝐴𝑇

𝜕((𝐴𝑇
𝑇 𝐴𝑇)−1)

𝜕(𝑡)
𝐴𝑇

𝑇 𝐷 + 𝐴𝑇 (𝐴𝑇
𝑇 𝐴𝑇)−1 𝜕(𝐴𝑇

𝑇)
𝜕(𝑡)

𝐷(7)

This all seems good, but after I implemented and made some experiments
with it I found that this is numerically very unstable. Especially when we
want to get the second term, in particular:

𝜕((𝐴𝑇
𝑇 𝐴𝑇)−1)

𝜕(𝑡)
= −(𝐴𝑇

𝑇 𝐴𝑇)−1 𝜕(𝐴𝑇
𝑇 𝐴𝑇)

𝜕(𝑡)
(𝐴𝑇

𝑇 𝐴𝑇)−1

= −(𝐴𝑇
𝑇 𝐴𝑇)−1(

𝜕(𝐴𝑇
𝑇)

𝜕(𝑡)
𝐴𝑇 + 𝐴𝑇

𝑇
𝜕(𝐴𝑇)
𝜕(𝑡)

)(𝐴𝑇
𝑇 𝐴𝑇)−1

and so the second term of Equation 7 when expanded becomes

−𝐴𝑇 (𝐴𝑇
𝑇 𝐴𝑇)−1 𝜕(𝐴𝑇

𝑇 𝐴𝑇)
𝜕(𝑡)

(𝐴𝑇
𝑇 𝐴𝑇)−1𝐴𝑇

𝑇 𝐷

= −𝒯𝑇 𝐵((𝒯𝑇 𝐵)𝑇 𝒯𝑇 𝐵)
−1

(𝜕𝐵𝑇 𝒯𝑇
𝑇

𝜕(𝑡)
𝒯𝑇 𝐵 + 𝐵𝑇 𝒯𝑇

𝑇
𝜕(𝒯𝑇 𝐵)

𝜕(𝑡)
)(𝒯𝑇 𝐵)−1𝒯𝑇 𝐵𝐷

This unfortunately requires a very careful implementation and my attempts
result in a very numerically unstable state.

If we really want to make it work, I would probably need to revise a careful
implementation and add a lot of check routines as well as doing line search
to determine a step size. This becomes ridiculously complicated and not
really practical.

Let me be honest, it is probably because of my poor
math skills, I have never been good at it. So either
the implementation is not careful enough, or maybe
my derivation is not correct.

Level 4: A Weak Variable Projection Method
Okay, so I am stuck. I spent some time and effort on variable projection,
hoping that this could do some help, but this seems to be an unfruitful path.

How about now we look in retrospect? We do know:

1. Chord length heuristic is actually a good heuristic, so good that assum-
ing we have the right ordered data sample points, we are already in the
good basin.

2. An alternating approach is good actually, but converges super slow.
3. Even in the alternating approach, using the simpler nearest point is

equally good, and considering robustness, better than Gauss-Newton.
4. Advanced method like variable projection is just a juggling of unnec-

essary complexity and we have not been able to reach a good solution.

Okay, so what now? Getting a correct Δ𝑡 for minimizing Equation 6 is hard,
but we do have a good Δ𝑡 for Equation 4. It surely is suboptimal, but it is
good enough. We just need some tweaks to make it work to converge
faster.

We can make up for the suboptimal step update with a line search that is
based on a zero-order evaluation of Equation 6:

1. First, we obtain the search direction Δ𝑡 from the Gauss-Newton method
on Equation 4:

Δ𝑡 = −(𝐽𝑇 𝐽)−1𝐽𝑇 𝑅

where 𝑅 is the residual from Equation 4.

2. We perform a line search along this direction to find an optimal step size
𝛼, evaluated using Equation 6 instead of Equation 4:

min
𝛼

‖𝐴𝑇+𝛼Δ𝑡𝑃 ∗
𝑇+𝛼Δ𝑡 − 𝐷‖

𝐹

We determine 𝛼 using line search (golden section search).

3. Finally, we enhance robustness by sampling randomly around 𝑇 + 𝛼Δ𝑡
and selecting one that minimizes Equation 6.

The key insight is that while computing the true gradient of the total loss
function is numerically unstable, we can:

• Use the simpler loss function to obtain a search direction
• Validate steps using the total loss function through line search
• Improve robustness through random sampling

Results:

The following plot can be generated by running this
command in the repository:

cargo run --bin bezier-least-square-fit-
convergence-comparison-
plot

Figure 8:
Convergence of new weak variable projection method compared to other ones. The method shows better

convergence than both Pastva variants. (x-axis: iteration steps, y-axis: error)

Of course it would be good, that is more heuristic
and so much more steps of compute!

Lessons Learned

Recently I have seen a re-occurring theme happening in different places
and it is that sometimes we should prefer simple methods just for the sake
of simplicity, and simplicity sometimes correlates with robustness.

https://github.com/LuxxxLucy/bezier-rs
https://pomax.github.io/bezierinfo/#curvefitting
https://web.archive.org/web/20180403213813/http://jimherold.com/2012/04/20/least-squares-bezier-fit/
https://upload.wikimedia.org/wikipedia/commons/thumb/d/d0/Bezier_curve.svg/440px-Bezier_curve.svg.png
https://web.archive.org/web/20180403213813/http://jimherold.com/2012/04/20/least-squares-bezier-fit/
https://pomax.github.io/bezierinfo/#curvefitting
https://www.cs.umd.edu/users/oleary/software/varpro.pdf
https://core.ac.uk/download/pdf/36730496.pdf
https://geo-ant.github.io/blog/2020/variable-projection-part-1-fundamentals/

	Introduction
	The Least Square Method
	Level 1: least square, simply
	Level 2: An Alternating Method
	Level 3: Variable Projection
	Level 4: A Weak Variable Projection Method
	Lessons Learned

