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Note that this is the second blog in the Bezielogue series on bezier curves.

The editor (in its preliminary version) is available at
luxxlucy/houjing, see crates/houjing-main

TL;DR We introduce two fundamental operations split and merge that a
vector graphics editor should support for manipulating the control points
(nodes) of Bézier curves.

Introduction
Users of vector graphics editors routinely need to split and merge curve
segments.

Popular vector graphics applications like Adobe
Illustrator, Inkscape, and Figma all provide curve
cutting and joining tools that rely on these
operations. However, merging is typically not
implemented in a lossless way but rather handled
by general-purpose simplification algorithms. More
on this in the future.

Given an already-created path (a consecutive sequence of Bézier
segments), split enables a user to create a new control point on a curve,
making it possible to further manipulate the curve. In Inkscape, this is done
by selecting the Node tool and double-clicking on a curve.

Create a new path using the Path tool Split: double-click to insert a new control point (Node tool)

Figure 1: 
Split operation in Inkscape: inserting a new control point

Throughout this blog, we focus on cubic Bézier
curves. Linear and quadratic Bézier curves are
trivial and can be pre-processed into cubic ones,
while higher-order curves are beyond our scope.

Merge is the reverse operation of split. Sometimes a user creates a new
point, forgets about it, and ultimately makes no changes to it. Or data
imported from external sources may naturally contain duplicated
unnecessary points. Ideally, cleanup is needed—either deliberately
triggered by the user or implicitly performed during export. These
unnecessary points should be removed, effectively merging two or more
Bézier segments back into one.

Note that split operations are always lossless—the path before and after
splitting remains identical. However, merge operations are not always
lossless.

In Inkscape, merge can be achieved either by explicitly deleting a point
using the Node tool or by applying the Simplify tool. In both cases, the
merge operation is not guaranteed to be lossless. Point deletion and
simplification are both destructive processes that do not aim to preserve the
original curve shape. After all, users may simply want to delete a point or
simplify the curve without any expectation of lossless behavior. For point
deletion, if the curve can be merged losslessly, such deletion will indeed
maintain the shape. However, for simplification, even when lossless merge
is possible, the general-purpose simplification algorithm will still fail to
recognize such merge opportunities.

In this blog, we focus on the lossless case where merge operations can
recover the original curve exactly within numerical precision.

Basic Formulation
We introduce the basic formulation of Bézier curves before diving into split
and merge operations.

Cubic Bézier curves are defined by control points 𝑝0, 𝑝1, 𝑝2, 𝑝3:

𝐵(𝑡) = (1 − 𝑡)3𝑝0 + 3(1 − 𝑡)2𝑡𝑝1 + 3(1 − 𝑡)𝑡2𝑝2 + 𝑡3𝑝3

The two operations are defined as follows:

1. Split: Given curve 𝐵(𝑡) with control points 𝑝0, 𝑝1, 𝑝2, 𝑝3 and parameter
𝑡𝑠 ∈ [0, 1], produce curves with control points 𝑎0, 𝑎1, 𝑎2, 𝑎3 and 𝑏0, 𝑏1, 𝑏2, 𝑏3
such that:

• Left curve represents 𝐵(𝑡) for 𝑡 ∈ [0, 𝑡𝑠]
• Right curve represents 𝐵(𝑡) for 𝑡 ∈ [𝑡𝑠, 1]

2. Merge: Given adjacent curves with control points 𝑎0, 𝑎1, 𝑎2, 𝑎3 and
𝑏0, 𝑏1, 𝑏2, 𝑏3, reconstruct original control points 𝑝0, 𝑝1, 𝑝2, 𝑝3.

Split: De Casteljau Construction
De Casteljau’s algorithm provides an elegant geometric method for splitting
Bézier curves. Rather than manipulating the algebraic form, it uses repeated
linear interpolation to find the split point and new control points.

Paul de Casteljau developed this algorithm in 1959
while working at Citroën, though it wasn’t published
until 1975. It predates Bézier’s work by several
years.

For a cubic curve with control points 𝑝0, 𝑝1, 𝑝2, 𝑝3, splitting at parameter 𝑡
proceeds in three levels:

Level 1: Linear interpolation between adjacent control points

𝑞0 = 𝑝0 + 𝑡(𝑝1 − 𝑝0) = (1 − 𝑡)𝑝0 + 𝑡𝑝1
𝑞1 = 𝑝1 + 𝑡(𝑝2 − 𝑝1) = (1 − 𝑡)𝑝1 + 𝑡𝑝2
𝑞2 = 𝑝2 + 𝑡(𝑝3 − 𝑝2) = (1 − 𝑡)𝑝2 + 𝑡𝑝3

Level 2: Interpolate between the 𝑞 points

𝑟0 = 𝑞0 + 𝑡(𝑞1 − 𝑞0) = (1 − 𝑡)𝑞0 + 𝑡𝑞1
𝑟1 = 𝑞1 + 𝑡(𝑞2 − 𝑞1) = (1 − 𝑡)𝑞1 + 𝑡𝑞2

Level 3: Find the split point

𝑠 = 𝑟0 + 𝑡(𝑟1 − 𝑟0) = (1 − 𝑡)𝑟0 + 𝑡𝑟1

The split produces two cubic curves:
• Left curve: 𝑎0 = 𝑝0, 𝑎1 = 𝑞0, 𝑎2 = 𝑟0, 𝑎3 = 𝑠
• Right curve: 𝑏0 = 𝑠, 𝑏1 = 𝑟1, 𝑏2 = 𝑞2, 𝑏3 = 𝑝3

Figure 2: 
De Casteljau construction showing the geometric process of splitting a cubic Bézier curve at parameter 𝑡.
The algorithm constructs intermediate points through successive linear interpolations. (Modified from SFU

CMPT361 lecture slides, see link)

This construction guarantees that both resulting curves are valid cubic
Bézier curves that together represent the original curve exactly.

It is worth noting that in a real editor, splitting does not proceed by the user
providing a value of 𝑡 through a numerical input field. Rather, the user
typically indicates the split location with a mouse cursor position.

Figure 3: 
In an actual split session, the user indicates intent through cursor position. The editor finds the closest point

on the curve and uses its corresponding 𝑡 value to perform the split.

The figure above is captured from a toy editor I made. There is also a live
GIF so that this becomes intuitive to understand, see here.

Merge: Reconstructing the Original
Merge reverses the split operation. While we could consider merging
multiple curve segments, we’ll focus on the two-curve case (left and right
curves). The multiple segment case becomes a trivial repeated application
of the two-curve merge.

Consider a left curve with control points 𝑎0, 𝑎1, 𝑎2, 𝑎3 and a right curve with
control points 𝑏0, 𝑏1, 𝑏2, 𝑏3. For a valid merge, we need to verify three
conditions:

Condition 1: C0 Continuity: The curves must connect—the last point of the
left curve must equal the first point of the right curve:

An implementation detail: we need to determine
the correct order of the two curves. A simple
approach is to test both directions—if C0 continuity
fails in both cases, the curves cannot be merged.

𝑎3 = 𝑏0

Condition 2: Direction Check: Once we confirm the curves are connected,
we verify that vectors 𝑎3 − 𝑎2 and 𝑏1 − 𝑏0 point in the same direction:

angle(𝑎3 − 𝑎2) = angle(𝑏1 − 𝑏0)

If this fails, the curves cannot be merged losslessly.

From de Casteljau’s construction, we know:

𝑎3 − 𝑎2
𝑡

= 𝑏1 − 𝑏0
1 − 𝑡

(1)

This relationship emerges from the de Casteljau
construction. The vectors 𝑎3 − 𝑎2 and 𝑏1 − 𝑏0 are
scaled versions of the same geometric direction.

where 𝑡 is the original split parameter. We can solve for 𝑡:

𝑡 = ‖𝑎3 − 𝑎2‖
‖𝑎3 − 𝑎2‖ + ‖𝑏1 − 𝑏0‖

Condition 3: Intermediate Point Consistency: The intermediate
construction point must match:

𝑎1 +
𝑎2 − 𝑎1
𝑡

= 𝑏2 +
𝑏1 − 𝑏2
1 − 𝑡

Referring to Figure 2, we can compute the intermediate point 𝑄1 in two
ways: from the left curve (𝑎1 +

𝑎2−𝑎1
𝑡 ) or from the right curve (𝑏2 +

𝑏1−𝑏2
1−𝑡 ). The

condition is satisfied when these two calculations yield the same point
(within numerical tolerance).

Once the three conditions are met, we can reconstruct the original control
points:

𝑝0 = 𝑎0

𝑝1 = 𝑎0 +
𝑎1 − 𝑎0
𝑡

𝑝2 = 𝑏3 +
𝑏2 − 𝑏3
1 − 𝑡

𝑝3 = 𝑏3

we can manually split a segment into multiple segments apply merge, all these segments should recover to the original one

Figure 4: 
A sanity-check: split and then merge

A live GIF can be found here.

Verification of Equivalence
Testing and verification of split and merge operations require a distance
measure to compare curves before and after operations. If the distance falls
below a threshold, we can declare the operations lossless.

Wang, Siqi, et al. “Bézier Spline Simplification Using
Locally Integrated Error Metrics.” SIGGRAPH Asia
2023 Conference Papers. 2023.

Suitable distance measures include Hausdorff distance, Fréchet distance, or
locally integrated distance (Wang et al. 2023).

Alternatively, we can utilize an SMT solver operating on real number theory.
The verification process encodes the equivalence check in a
straightforward manner.

Equivalence Check: Given two curves 𝐴 and 𝐵 (each potentially composed
of multiple segments), they are equivalent if and only if:

1. For all 𝑡1 ∈ [0, 1], there exists 𝑡2 ∈ [0, 1] such that 𝐴(𝑡1) = 𝐵(𝑡2)
2. For all 𝑡1 ∈ [0, 1], there exists 𝑡2 ∈ [0, 1] such that 𝐵(𝑡1) = 𝐴(𝑡2)

In SMT-LIB format, suppose 𝐴 and 𝐵 each have two curve segments: 𝐴 =
{{𝑝0, 𝑝1, 𝑝2, 𝑝3}, {𝑝4, 𝑝5, 𝑝6, 𝑝7}} and 𝐵 = {{𝑞0, 𝑞1, 𝑞2, 𝑞3}, {𝑞4, 𝑞5, 𝑞6, 𝑞7}}. We can
write:

; define the bezier cubic function
(define-fun bezier_cubic ((t Real) (p0 Real) (p1 Real) (p2 Real) (p3
Real)) Real
    (+
        (* (* (* (- 1 t) (- 1 t)) (- 1 t)) p0)
        (* (* (* (* 3 t) (- 1 t)) (- 1 t)) p1)
        (* (* (* (* 3 t) t) (- 1 t)) p2)
        (* (* (* t t) t) p3)))

; defines the control points of A
(declare-const p0_x Real) (declare-const p0_y Real)
(declare-const p1_x Real) (declare-const p1_y Real)
(declare-const p2_x Real) (declare-const p2_y Real)
(declare-const p3_x Real) (declare-const p3_y Real)
(declare-const p4_x Real) (declare-const p4_y Real)
(declare-const p5_x Real) (declare-const p5_y Real)
(declare-const p6_x Real) (declare-const p6_y Real)
(declare-const p7_x Real) (declare-const p7_y Real)

; assign values the control points of A
(assert (and
    (= p0_x 0.0) (= p0_y 0.0)
    (= p1_x 1.0) (= p1_y 2.0)
    (= p2_x 2.0) (= p2_y 2.0)
    (= p3_x 3.0) (= p3_y 0.0)
    (= p4_x 3.0) (= p4_y 0.0)
    (= p5_x 2.0) (= p5_y 2.0)
    (= p6_x 1.0) (= p6_y 2.0)
    (= p7_x 0.0) (= p7_y 0.0)
))

; defines the control points of B
(declare-const q0_x Real) (declare-const q0_y Real)
(declare-const q1_x Real) (declare-const q1_y Real)
(declare-const q2_x Real) (declare-const q2_y Real)
(declare-const q3_x Real) (declare-const q3_y Real)
(declare-const q4_x Real) (declare-const q4_y Real)
(declare-const q5_x Real) (declare-const q5_y Real)
(declare-const q6_x Real) (declare-const q6_y Real)
(declare-const q7_x Real) (declare-const q7_y Real)

; assign values the control points of B
(assert (and
    (= q0_x 0.0) (= q0_y 0.0)
    (= q1_x 1.0) (= q1_y 2.0)
    (= q2_x 2.0) (= q2_y 2.0)
    (= q3_x 3.0) (= q3_y 0.0)
    (= q4_x 3.0) (= q4_y 0.0)
    (= q5_x 2.0) (= q5_y 2.0)
    (= q6_x 1.0) (= q6_y 2.0)
    (= q7_x 0.0) (= q7_y 0.0)
))

(assert (forall ((t1 Real))
    (=>
        (and (>= t1 0.0) (<= t1 1.0))
        (exists ((t2 Real))
            (and
                (>= t2 0.0) (<= t2 1.0)
                (let ((p_x (bezier_cubic t1 p0_x p1_x p2_x p3_x))
                      (p_y (bezier_cubic t1 p0_y p1_y p2_y p3_y)))
                    (or
                        (and
                            (= p_x (bezier_cubic t2 q0_x q1_x q2_x q3_x))
                            (= p_y (bezier_cubic t2 q0_y q1_y q2_y q3_y))
                        )
                        (and
                            (= p_x (bezier_cubic t2 q4_x q5_x q6_x q7_x))
                            (= p_y (bezier_cubic t2 q4_y q5_y q6_y q7_y))
                        )
                    )
                )
            )
        )
    )
))

(assert (forall ((t1 Real))
    (=>
        (and (>= t1 0.0) (<= t1 1.0))
        (exists ((t2 Real))
            (and
                (>= t2 0.0) (<= t2 1.0)
                (let ((p_x (bezier_cubic t1 p4_x p5_x p6_x p7_x))
                      (p_y (bezier_cubic t1 p4_y p5_y p6_y p7_y)))
                    (or
                        (and
                            (= p_x (bezier_cubic t2 q0_x q1_x q2_x q3_x))
                            (= p_y (bezier_cubic t2 q0_y q1_y q2_y q3_y))
                        )
                        (and
                            (= p_x (bezier_cubic t2 q4_x q5_x q6_x q7_x))
                            (= p_y (bezier_cubic t2 q4_y q5_y q6_y q7_y))
                        )
                    )
                )
            )
        )
    )
))

(assert (forall ((t1 Real))
    (=>
        (and (>= t1 0.0) (<= t1 1.0))
        (exists ((t2 Real))
            (and
                (>= t2 0.0) (<= t2 1.0)
                (let ((q_x (bezier_cubic t1 q0_x q1_x q2_x q3_x))
                      (q_y (bezier_cubic t1 q0_y q1_y q2_y q3_y)))
                    (or
                        (and
                            (= q_x (bezier_cubic t2 p0_x p1_x p2_x p3_x))
                            (= q_y (bezier_cubic t2 p0_y p1_y p2_y p3_y))
                        )
                        (and
                            (= q_x (bezier_cubic t2 p4_x p5_x p6_x p7_x))
                            (= q_y (bezier_cubic t2 p4_y p5_y p6_y p7_y))
                        )
                    )
                )
            )
        )
    )
))

(assert (forall ((t1 Real))
    (=>
        (and (>= t1 0.0) (<= t1 1.0))
        (exists ((t2 Real))
            (and
                (>= t2 0.0) (<= t2 1.0)
                (let ((q_x (bezier_cubic t1 q4_x q5_x q6_x q7_x))
                      (q_y (bezier_cubic t1 q4_y q5_y q6_y q7_y)))
                    (or
                        (and
                            (= q_x (bezier_cubic t2 p0_x p1_x p2_x p3_x))
                            (= q_y (bezier_cubic t2 p0_y p1_y p2_y p3_y))
                        )
                        (and
                            (= q_x (bezier_cubic t2 p4_x p5_x p6_x p7_x))
                            (= q_y (bezier_cubic t2 p4_y p5_y p6_y p7_y))
                        )
                    )
                )
            )
        )
    )
))

(check-sat)

While the SMT-LIB syntax is verbose, the underlying concept is
straightforward and easily automated.

https://github.com/LuxxxLucy/houjing
https://www2.cs.sfu.ca/CourseCentral/361/inkpen/Notes/361_deCasteljau_john.pdf
https://luxxxlucy.github.io/projects/2025_bezielogue_2_split_and_merge/asset/cursor_split.gif
https://luxxxlucy.github.io/projects/2025_bezielogue_2_split_and_merge/asset/cursor_merge.gif

	Introduction
	Basic Formulation
	Split: De Casteljau Construction
	Merge: Reconstructing the Original
	Verification of Equivalence

